Arkusfunktionen (von lat. arcus „Bogen“), auch zyklometrische Funktionen genannt, sind, wie es ihre alternative Bezeichnung als inverse Winkelfunktionen andeutet, Umkehrfunktionen trigonometrischer Funktionen – die Arkusfunktionen liefern also zu einem gegebenen Winkelfunktionswert den zugehörigen Winkel.
Bạn đang xem: hàm lượng giác ngược
Zu jeder der sechs Winkelfunktionen gibt es eine Arkusfunktion, die in mathematischen Formeln und Gleichungen durch ein vorangestelltes oder vom Kürzel der zugehörigen trigonometrischen Funktion unterschieden wird. Vor allem yên ổn englischsprachigen Raum, aber auch auf den Tastaturen der meisten Taschenrechner, findet sich immer häufiger eine Schreibweise mit dem Exponenten −1, der signalisieren soll, dass es sich um die Umkehrfunktion (aber nicht um den Kehrwert) der besagten Winkelfunktion handelt. Dies widerspricht der Schreibweise von Potenzen der Winkelfunktionen wie z. B. beim „trigonometrischen Pythagoras“, und mit ist statt der Umkehrfunktion Arkussinus korrekt der Kosekans gemeint.
Winkelfunktion | Arkusfunktion | Kürzel | im englischsprachigen Raum verbreitetes, alternatives Kürzel (hat yên ổn Deutschen die Bedeutung des Kehrwertes) |
---|---|---|---|
Sinus | Arkussinus | oder | |
Kosinus | Arkuskosinus | oder | |
Tangens | Arkustangens | oder | |
Kotangens | Arkuskotangens | oder | |
Sekans | Arkussekans | ||
Kosekans | Arkuskosekans |

Da die trigonometrischen Funktionen periodische Funktionen sind, sind sie zunächst einmal nicht invertierbar. Beschränkt man sich jedoch auf ein Monotonieintervall der jeweiligen Ausgangsfunktion, z. B. auf das Intervall oder , kann die so sánh erhaltene eingeschränkte Funktion sehr wohl invertiert werden. Allerdings überdecken die Monotonieintervalle jeweils nur eine halbe Periode, siehe Abbildung oben. Kennt man jedoch sowohl den Sinus als auch den Kosinus eines Winkels (allgemeiner: komplexe Komponenten), so sánh kann man den Winkel bis auf ganze Perioden ermitteln, siehe Abbildung rechts für die Anschauung und arctan2 für die Berechnung.
Beziehungen zwischen den Funktionen[Bearbeiten | Quelltext bearbeiten]
Siehe auch: Trigonometrische Funktion: Beziehungen zwischen den Funktionen
Xem thêm: hình ảnh nắm tay người yêu đẹp
Arkusfunktionen lassen sich wie folgt ineinander umrechnen (wobei die Vorzeichenfunktion bezeichnet):
arcsin | arccos | arctan | arccot | arcsec | arccsc | |
---|---|---|---|---|---|---|
arcsin(x) | ||||||
arccos(x) | ||||||
arctan(x) | ||||||
arccot(x) | ||||||
arcsec(x) | ||||||
arccsc(x) |
Bei den für verschwindenden Nennern sind die entsprechenden Grenzwerte zu wählen, z. B.:
Xem thêm: dob
Siehe auch[Bearbeiten | Quelltext bearbeiten]
- Trigonometrische Funktion
- Hyperbelfunktion
- Formelsammlung Trigonometrie
Weblinks[Bearbeiten | Quelltext bearbeiten]
- Information auf Mathe-Online
- Eric W. Weisstein: Inverse Trigonometric Functions. In: MathWorld (englisch).
Bình luận