3 Antworten

Von gutefrage auf Grund seines Wissens auf einem Fachgebiet ausgezeichneter Nutzer
Mathematik
Bạn đang xem: cos x = 1/2
Rechnerisch muss man die Umkehrfunktion des Cosinus, den Arcuscosinus auf ½ anwenden. Auf dem TR steht dort meist cos⁻¹, was etwas missverständlich ist, denn es ist damit nicht
cos⁻¹(x) = (cos(x))⁻¹=1/(cos(x)) gemeint, sondern das "⁻¹" ist lặng Sinne von f⁻¹: y↦x als Umkehrung einer Abbildung f:x↦y gemeint.
Xem thêm: quả óc chó đỏ trung quốc
Zeichnerisch lässt sich das Ganze auch lösen: Zeichne einen Kreis mit Radius R um den Ursprung eines Achsenkreuzes, wobei R die Einheit darstellen soll. Zeichne anschließend eine Parallele zur y-Achse bei x=R/2. Wo diese Gerade den Kreis schneidet, ist eine weitere Ecke eines rechtwinkligen Dreiecks. Zeichne die Verbindungsgerade zwischen diesem Punkt (es ist (R/2; R√{1–(½)²}), nach dem Satz des Pythagoras) und dem Ursprung und miss den Winkel zwischen dieser Geraden und der x-Achse. Du wirst 60° bzw. 𝜋/3 herausbekommen, denn
Xem thêm: khai triển (x+2y)^5
cos(60°) = cos(𝜋/3) = sin(30°) = sin(𝜋/6) = ½.

Arccos(1/2) = x
Soweit ich weiß, sollten das 60° sein.

Bình luận